Three-dimensional geometrical changes of the human tibialis anterior muscle and its central aponeurosis measured with three-dimensional ultrasound during isometric contractions
نویسندگان
چکیده
Background. Muscles not only shorten during contraction to perform mechanical work, but they also bulge radially because of the isovolumetric constraint on muscle fibres. Muscle bulging may have important implications for muscle performance, however quantifying three-dimensional (3D) muscle shape changes in human muscle is problematic because of difficulties with sustaining contractions for the duration of an in vivo scan. Although two-dimensional ultrasound imaging is useful for measuring local muscle deformations, assumptions must be made about global muscle shape changes, which could lead to errors in fully understanding the mechanical behaviour of muscle and its surrounding connective tissues, such as aponeurosis. Therefore, the aims of this investigation were (a) to determine the intra-session reliability of a novel 3D ultrasound (3DUS) imaging method for measuring in vivo human muscle and aponeurosis deformations and (b) to examine how contraction intensity influences in vivo human muscle and aponeurosis strains during isometric contractions. Methods. Participants (n = 12) were seated in a reclined position with their left knee extended and ankle at 90° and performed isometric dorsiflexion contractions up to 50% of maximal voluntary contraction. 3DUS scans of the tibialis anterior (TA) muscle belly were performed during the contractions and at rest to assess muscle volume, muscle length, muscle cross-sectional area, muscle thickness and width, fascicle length and pennation angle, and central aponeurosis width and length. The 3DUS scan involved synchronous B-mode ultrasound imaging and 3D motion capture of the position and orientation of the ultrasound transducer, while successive cross-sectional slices were captured by sweeping the transducer along the muscle. Results. 3DUS was shown to be highly reliable across measures of muscle volume, muscle length, fascicle length and central aponeurosis length (ICC ≥ 0.98, CV < 1%). The TA remained isovolumetric across contraction conditions and progressively shortened along its line of action as contraction intensity increased. This caused the muscle to bulge centrally, predominantly in thickness, while muscle fascicles shortened and pennation angle increased as a function of contraction intensity. This resulted in central aponeurosis strains in both the transverse and longitudinal directions increasing with contraction intensity. Discussion. 3DUS is a reliable and viable method for quantifying multidirectional muscle and aponeurosis strains during isometric contractions within the same session. Contracting muscle fibres do work in directions along and orthogonal to the muscle's line of action and central aponeurosis length and width appear to be a function of muscle fascicle shortening and transverse expansion of the muscle fibres, which is dependent on contraction intensity. How factors other than muscle force change the elastic mechanical behaviour of the aponeurosis requires further investigation.
منابع مشابه
Load-elongation characteristics of in vivo human tendon and aponeurosis.
In the present study, we measured the in vivo load-elongation characteristics of the human tibialis anterior tendon and its central aponeurosis. Measurements were taken in five men using dynamometry, muscle electrical stimulation and ultrasonography. Percutaneous tetanic stimulation of the muscle at successive voltages corresponding to 20, 40, 60, 80 and 100 % of maximum isometric dorsiflexion ...
متن کاملChanges in fascicle lengths and pennation angles do not contribute to residual force enhancement/depression in voluntary contractions.
Force enhancement following muscle stretching and force depression following muscle shortening are well-accepted properties of skeletal muscle contraction. However, the factors contributing to force enhancement/depression remain a matter of debate. In addition to factors on the fiber or sarcomere level, fiber length and angle of pennation affect the force during voluntary isometric contractions...
متن کاملMapping of movement in the isometrically contracting human soleus muscle reveals details of its structural and functional complexity.
It is becoming increasingly apparent that precise knowledge of the anatomic features of muscle, aponeurosis, and tendons is necessary for understanding how a muscle-tendon complex generates force and accomplishes length changes. This report presents both anatomic and functional data from the human soleus muscle acquired by using magnetic resonance imaging. The results show a strong relationship...
متن کاملNonuniform strain of human soleus aponeurosis-tendon complex during submaximal voluntary contractions in vivo.
The distribution of strain along the soleus aponeurosis tendon was examined during voluntary contractions in vivo. Eight subjects performed cyclic isometric contractions (20 and 40% of maximal voluntary contraction). Displacement and strain in the apparent Achilles tendon and in the aponeurosis were calculated from cine phase-contrast magnetic resonance images acquired with a field of view of 3...
متن کاملRepeatability of Corticospinal and Spinal Measures during Lengthening and Shortening Contractions in the Human Tibialis Anterior Muscle
UNLABELLED Elements of the human central nervous system (CNS) constantly oscillate. In addition, there are also methodological factors and changes in muscle mechanics during dynamic muscle contractions that threaten the stability and consistency of transcranial magnetic stimulation (TMS) and perpherial nerve stimulation (PNS) measures. PURPOSE To determine the repeatability of TMS and PNS mea...
متن کامل